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Hawks and Doves on small-world networks
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We explore the Hawk-Dove game on networks with topologies ranging from regular lattices to random
graphs with small-world networks in between. This is done by means of computer simulations using several
update rules for the population evolutionary dynamics. We find the overall result that cooperation is sometimes
inhibited and sometimes enhanced in those network structures, with respect to the mixing population case. The
differences are due to different update rules and depend on the gain-to-cost ratio. We analyze and qualitatively
explain this behavior by using local topological arguments.
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I. INTRODUCTION

Hawks and Doves, also known as Chicken or the Snow-
drift game, is a two-person, symmetric game with the follow-
ing payoff bimatrix:
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In this matrix, H stands for hawk and D stands for dove.
Metaphorically, a hawkish behavior means a strategy of
fighting, while a dove, when facing a confrontation, will al-
ways yield. As in the game Prisoner’s Dilemma [1], this
game, for all its simplicity, appears to capture some impor-
tant features of social interactions. In this sense, it applies in
many situations in which “parading,” “retreating,” and “es-
calading” are common. One striking example of a situation
that has been thought to lead to a Hawk-Dove dilemma is the
Cuban missile crisis in 1962 [2]. In the payoff matrix above,
G >0 is the gain that a hawk obtains when it meets a dove;
the dove retreats and loses nothing. If a dove meets another
dove, one or both of them will retreat, and they will gain half
of the price each (G/2), on average. Finally, when a hawk
meets another hawk, they both fight and each obtains an
average payoff of (G—C)/2, where C is the cost of any in-
jury that might occur in the fight. It is assumed that C> G,
i.e., the cost of injury always exceeds the prize of the fight.
The game has the same structure as the Prisoner’s Dilemma
in that if both players cooperate (i.e., they play dove), they
both gain something, although there is a strong motivation to
act aggressively (i.e., to play the hawk strategy). However, in
this game one makes the assumption that one player is will-
ing to cooperate, even if the other does not, and that mutual
defection, i.e., result (H,H), is detrimental to both players.
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In contrast to Prisoner’s Dilemma, which has a unique
Nash equilibrium that corresponds to both players defecting,
the Hawk-Dove game has two Nash equilibria in pure strat-
egies (H,D) and (D,H), and a third equilibrium in mixed
strategies, where strategy H is played with probability G/C
and strategy D with probability 1-G/C. Note that we only
consider one-shot games in this work; repeated games are
not taken into account.

Considering now not just two players but rather a large,
mixing population of identical players, evolutionary game
theory [3] prescribes that the only evolutionarily stable strat-
egy (ESS) of the population is the mixed strategy, giving
rise, at equilibrium, to a frequency of hawks in the popula-
tion equal to G/C. In the case of the Prisoner’s Dilemma,
one finds a unique ESS with all the individuals defecting.
However, in 1992, Nowak and May [4] showed that coop-
eration in the population is sustainable in the Prisoner’s Di-
lemma under certain conditions, provided that the network of
the interactions between players has a lattice spatial struc-
ture. Killingback and Doebeli [5] extended the spatial ap-
proach to the Hawk-Dove game and found that a planar lat-
tice structure with only nearest-neighbor interactions may
favor cooperation, i.e., the fraction of doves in the population
is often higher than what is predicted by evolutionary game
theory. In addition, complex dynamics resembling phase
transitions were observed, which is not the case in the mix-
ing population. In a more recent work, however, Hauert and
Doebeli [6] were led to a different conclusion, namely, that
spatial structure does not seem to favor cooperation in the
Hawk-Dove game. Additional results on the Hawk-Dove
game on a two-dimensional lattice have been recently ob-
tained by Sysi-Aho et al. [7] using a simple local decision
rule for each player that does not reduce to the customary
replicator or imitation dynamics [3]. They concluded that,
with their player’s decision rule, cooperation persists, giving
results different from those obtained with the replicator dy-
namics. These apparently contradictory results aroused our
curiosity and motivated us to study the situation in a more
general setting, in which the mixing population and the lat-
tice are special cases.

Following pioneering work by sociologists in the 1960s,
such as that of Milgram [8], in the last few years it has
become apparent that the topological structures of social in-
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teractions networks have particular, and partly unexpected,
properties that are a consequence of their small-world char-
acteristics. Roughly speaking, small-world networks are
graphs that have a short average path length, i.e., any node is
relatively close to any other node, like random graphs and
unlike regular lattices. However, in contrast to random
graphs, they also have a certain amount of local structure, as
measured, for instance, by a quantity called the clustering
coefficient (an excellent review of the subject is [9]). In the
same vein, many real conflicting situations in economy and
sociology are not well described, neither by a fixed geo-
graphical position of the players in a regular lattice nor by a
mixing population or a random graph. Starting from the two
limiting cases of a random graph and the two-dimensional
lattice, our objective here is to study the Hawk-Dove game
on small-world networks in order to cover the “middle
ground” between them. Although the Watts-Strogatz net-
works [10] used here are not faithful representations of the
structure of real social networks, they are a useful first step
toward a better understanding of evolutionary games on net-
works. Although we study here the Hawk-Dove game, this
class of networks has been previously used for the Prisoner’s
Dilemma in [11-13]. The work of [11] is especially relevant
for our present study, whereas the other two deal either with
special features, such as “influential individuals” [12], or re-
fer to iterated versions of the game [13].

Recently, Santos and Pacheco [14] have investigated both
the Prisoner’s Dilemma and Hawk-Dove games on fixed
scale-free networks. The main observation from their simu-
lations is that, at least on preferential attachment networks,
the amount of cooperative behavior is much higher than in
either mixing or lattice-structured populations. In the ab-
stract, and in some particular social situation in which some
individuals have an unusually high number of contacts than
the rest, this is an interesting result. However, scale-free
graphs, which characterize the web and Internet among oth-
ers, are not a realistic model of most observed social net-
works for various reasons (see [15,16]), which is why we do
not comment further on the issue.

II. THE MODEL

In this section we present our network models and their
dynamical properties.

A. Population topologies

We consider a population P of N players where each in-
dividual i€ P is represented as a vertex v; of a graph
G(V,E), with v;e€V, Vie P. An interaction between two
players i and j is represented by the undirected edge ¢;; € E,
e;;=e;;. The number of neighbors of player i is the degree
k; of vertex v;. The average degree of the network will be

called k.

We shall use three main graph population structures: regu-
lar lattices, random graphs, and small worlds. In fact, our
goal is to explore significant population network structures
that somehow fall between the regular lattice and random
graph limits, including the bounding cases.
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Our regular lattices are two-dimensional with k;=8, Vv,
e V and periodic boundary conditions. This neighborhood is
usually called the Moore neighborhood and comprises nine
individuals, including the central node. We would like to
stress that we believe regular lattice structures are not real-
istic representations of most actual population structures, es-
pecially human, except when mobility and dispersal ability
of the individuals are limited as, for example, in plant ecol-
ogy and territorial animals. The main reasons why lattices
have been so heavily used is that they are more amenable to
mathematical analysis and are easier to simulate. We include
them here for two reasons: as an interesting bounding case
and to allow comparison to previous work.

The small-world networks used here are similar to the
graphs proposed by Watts and Strogatz [10]. However, there
are two main differences (see [17]). First, we start from a
two-dimensional regular lattice substrate, instead of a one-
dimensional lattice. This does not modify the main features
of the resulting graphs, as observed in [13], and as measured
by us. The reason for starting from a two-dimensional lattice
is to keep with the customary ordered population topology
that is used in structured evolutionary games. Although they
have been used as a starting point for Prisoner’s Dilemma by
Abramson and Kuperman [11], one-dimensional lattices do
not make much sense in a social or biological setting, al-
though after some rewiring the effect of the substrate be-
comes almost negligible.

The second difference is in the rewiring process. The al-
gorithm used here comes from [17] and works as follows:
starting from a regular two-dimensional lattice with periodic
boundary conditions, visit each edge and, with probability p,
replace it by an edge between two randomly selected verti-
ces, with the constraint that two vertices are not allowed to
be connected by more than one edge. As in the original

Watts-Strogatz model, the average vertex degree k does not
change, and the process may produce disconnected graphs,
which have been avoided in our simulations. The advantage
of this construction is that, for p — 1, the graph approaches a
classical Erdos-Rényi random graph, while this is not the
case for the original Watts-Strogatz construction, since in the
latter, the degree of any vertex is always larger than or equal
to k/2, k being the degree of a vertex in the original lattice.

We would like to point out that it is known that Watts-
Strogatz small worlds are not adequate representations of
social networks. Although they share some common statisti-
cal properties with the latter, i.e., high clustering and short
average path length, they lack other features that characterize
real social networks, such as clusters, and dynamical self-
organization [15]. In spite of these shortcomings, they are a
convenient first approximation for studying the behavior of
agents in situations where the interaction network is neither
regular nor random. Note also that once fixed, the interaction
network does not change during the system evolution in our
study, only the strategies may evolve. Evolutionary games on
dynamic networks have been studied, for instance, in
[18-20].

B. Population dynamics

1. Local dynamics

The local dynamics of a player i only depends on its own
strategy s; € {H,D}, and on the strategies of the k; players in
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its neighborhood N(i). Let us call M the payoff matrix of the
game (see Sec. I). The quantity

Gl=— 3 soMs0
i jeN(i)

is the average payoff collected by player i at time step ¢. Note
that in our study, i ¢ N(i) meaning that self-interaction is not
considered when calculating the average payoff of an indi-
vidual. Self-interaction has traditionally been taken into ac-
count in some previous work on the Prisoner’s Dilemma
game on grids [4,21] on the grounds that, in biological ap-
plications, several entities may occupy a single patch in the
network. Nowak and May [4] find that self-interaction does
not qualitatively change the results in the Prisoner’s Di-
lemma game. In the Hawk-Dove game, self-interaction is
usually not considered; moreover, in this work we wish to
compare results to those of [5,6], where self-interaction is
not included.

We use three types of rules to update a player’s strategy.
The rules are among those employed by Hauert and Doebeli
[6] to allow for comparison of the results in regular lattices
and in small-world networks. Decision rules based on the
player’s satisfaction degree, such as those used in [7,18-20],
are not examined here. The rules are (i) replicator dynamics;
(ii) proportional updating; and (iii) best takes over.

The replicator dynamics rule aims at maximal consistency
with the original evolutionary game theory equations. Player
i is updated by drawing another player j at random from the
neighborhood N(i) and replacing s; by s; with probability
pPi= ¢(Gj—Gi) [3].

The proportional updating rule is also a stochastic rule.
All the players in the neighborhood N(i), plus the player i
itself compete for the strategy i will take at the next time
step, each with a probability p; given by

__G

E,Gz’

Negative payoffs cannot be used with this rule because the
probabilities of replication must be p;=0. In order to avoid
negative, or zero, values, the payoffs have been shifted by an
amount equal to the cost C which, of course, leaves the
game’s Nash equilibria invariant.

In best-takes-over, the strategy s,(f) of individual i at time
step ¢ will be

pj 1,j e {N(i) U i}.

s =sj(t= 1),
where
je{N@G) Ui}: Gj=max{Gk(t— 1}, Vke{NG Ui}

That is, individual i will adopt the strategy of the player with
the highest payoff among its neighbors. If there is a tie, the
individual winner is chosen uniformly at random among the
best; otherwise, the rule is deterministic. It should be noted
that this rule does not fit to the usual continuous evolutionary
game theory, which leads to replicator dynamics, since the
update decision is a step function.
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2. Global dynamics

Calling C(1)=[s,(1),s5(1), ... ,s)x(t)] a configuration of the
population strategies at time step #, the global synchronous
system dynamics is implicitly given by

C(t)=F(C(t-1)), t=1,2,...

where F is the evolution operator.

Synchronous update, with its idealization of a global
clock, is customary in spatial evolutionary games, and most
results have been obtained using this model [4,5]. However,
perfect synchronicity is only an abstraction. Indeed, in some
biological and, particularly, sociological environments,
agents normally act at different and possibly uncorrelated
times, which seems to preclude a faithful globally synchro-
nous simulation in most cases of interest [22]. In spite of
this, it has been shown that the update mode does not fun-
damentally alter the results, as far as evolutionary games are
concerned [6,21]. In this paper, we present results for both
synchronous and asynchronous dynamics.

Asynchronous dynamics must nevertheless be further
qualified, since there are many ways for serially updating the
strategies of the agents. Here we use the discrete update dy-
namics that makes the least assumption about the update
sequence: the next cell to be updated is chosen at random
with uniform probability and with replacement. This corre-
sponds to a binomial distribution of the updating probability
and is a good approximation of a continuous-time Poisson
process. This asynchronous update is analogous to the one
used by Hauert and Doebeli [6], which will allow us to make
meaningful comparisons.

III. SIMULATION RESULTS

In order to analyze the influence of the structure of the
network on the proportion of cooperation (i.e., dove behav-
ior), 2500 players were organized into five different net-
works: a 50X 50 toroidal lattice where every cell is con-
nected to its eight nearest neighbors, three different small-
world networks, and the random graph. The three categories
of small worlds are obtained by rewiring each edge with a
certain probability p using the technique described in Sec.
IT A. The values used are p € {0.01,0.05,0.1}. The random
graph is generated by first creating the lattice and then rewir-
ing each link in the same manner used to construct small
worlds, but with probability p=1. Although our population
size is smaller than that used in [6], which is 10 000, results
turn out to be qualitatively similar and comparable. For each
of the five networks mentioned above and for all update
policies, 50 runs of 5000 time steps each were executed. In
the following figures, the curves indicating the proportion of
doves in the population were obtained by averaging over the
last ten time steps of each run, well after all transients have
decayed. At the beginning of each run, we generate a new
network of the type being studied and randomly initialize it
with 50% doves and 50% hawks. For completeness, we men-
tion that experiments with 10% and 90% initial cooperators,
respectively, give results that are qualitatively indistinguish-
able from the 50% case in the long run. Therefore, we do not
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include the corresponding graphs for reasons of space.

In the following figures, the dashed diagonal line going
from a fraction of cooperators of 1 for =0 to a fraction of 0
for r=1 represents the equation 1-G/C=1-r, which is the
equilibrium fraction of cooperators as a function of r given
by the standard replicator-dynamics equations [3]; it is re-
ported here for the sake of comparison. It should be noted,
however, that the simulations are not expected to fit this line.
The reason is that the analytic solution is obtained under two
main hypotheses: the population size is very large and indi-
viduals are matched pairwise randomly. These conditions are
not satisfied by the finite-size, discrete systems used for the
simulations, and thus, one should not expect strict adherence
to the mean-field equations. On the other hand, the type of
mesoscopic system simulated here is probably closer to real-
ity, where finiteness and discreteness are the rule. Another
reason why we do not expect the results of the simulations to
closely fit the theoretical solution is that two of the local
update rules (best-takes-over and proportional updating) do
not reduce to the standard replicator dynamics.

This section is subdivided into three separate parts, one
per decision rule previously mentioned in Sec. II B.

A. Replicator dynamics

To determine the probability p; for replacing an individual
i, having a gain G, by one of its randomly chosen neighbors
J, whose gain is G;, we use the previously introduced func-
tion ¢(G,~G,) as follows:

G.-G,
—L— if G,-G;>0

pPi= ¢(Gj -G) =) dmax (1)
0 otherwise

where d,,x=(G+C)/2 is the largest difference in gain there
can be between two players.

With this definition of ¢, individual i imitates neighbor j’s
strategy with a certain probability proportional to the differ-
ence of their average payoffs and only if j has a higher gain
than i. Note that if i and j have the same average payoffs, i’s
strategy is left untouched, while if G;—G;=d,,,, i necessar-
ily adopts j’s strategy.

Now taking a look at Figs. 1 and 2, we clearly observe
that for both synchronous and asynchronous dynamics, co-
operation is globally inhibited by spatial structure, confirm-
ing the results of [6]. Even the case of the random graph
generates higher rates of hawks. Further details as to why
this may occur can be found in Sec. IV.

We note in passing that the experimental curve corre-
sponding to the random-graph limit appears to be close to the
curve corresponding to the pair-approximation calculation in
Hauert and Doebeli’s work [6]. This is not surprising, given
that pair approximation works better in random graphs than
in regular lattices, unless higher-order effects are taken into
account [23]. Since the curves for the random graphs in Figs.
1 and 2 are averages over many graph realizations, each pair
has some probability to contribute in the simulation, which
explains the resemblance between our experimental curves
and the calculations of [6].
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FIG. 1. (Color online) Asynchronous replicator dynamics updat-
ing: (a) frequency of doves as a function of the gain-to-cost ratio
r for different topologies: lattice (p=0), small worlds (p=0.01,
p=0.05, p=0.1), random graph (p=1); (b) small world with
p=0.05 compared to the grid (p=0) and random graph (p=1) cases.
Bars indicate standard deviations, and the diagonal dashed line is
1-r (see text).

B. Proportional updating

Figures 3 and 4 show that, when using the proportional
updating rule, spatial structure neither favors nor inhibits
dovelike behavior contrary to what [5,6] seem to suggest.
Indeed, for low values of r, the more the network is struc-
tured, the higher the proportion of doves. However as r in-
creases, the tendency is reversed, thus giving a lower per-
centage of doves in the lattice and small-world networks than
present in the random-graph topology. This phenomenon is
even more marked when using the asynchronous update.

Thus when using the proportional updating rule, if spatial
structure should favor one strategy over the other for a given
value of r, it would be the one that is already present in
greater numbers when the topology is a random graph.

Another interesting aspect observed is the higher percent-
age of doves when updating asynchronously compared to the
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FIG. 2. (Color online) Synchronous replicator dynamics updat-
ing: (a) frequency of doves as a function of the gain-to-cost ratio
r for different topologies: lattice (p=0), small worlds (p=0.01,
p=0.05, p=0.1), random graph (p=1); (b) small world with
p=0.05 compared to the grid (p=0) and random graph (p=1) cases.
Bars indicate standard deviations, and the diagonal dashed line is
1-r (see text).

synchronous equivalent. This will be discussed in more de-
tail in Sec. IV.

C. Best-takes-over

As pointed out by Hauert and Doebeli [6], the best-takes-
over rule lacks stochasticity, which in Figs. 5 and 6, trans-
lates into discontinuous jumps.

Note that when updating synchronously, best-takes-over is
the only rule, out of the three studied here, where spatial
structure actually favors cooperation, as remarked in [5],
where this was the local update rule used. In fact, the same
qualitative results were found in [6]; however, they appear in
the “supplementary material” section, not in the main text.
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FIG. 3. (Color online) Asynchronous proportional updating: (a)
frequency of doves as a function of the gain-to-cost ratio r for
different topologies: lattice (p=0), small worlds (p=0.01, p=0.05,
p=0.1), random graph (p=1); (b) small world with p=0.05 com-
pared to the grid (p=0) and random graph (p=1) cases. Bars indi-
cate standard deviations, and the diagonal dashed line is 1—r (see
text).

D. Time evolution

Although the figures in Secs. III A-III C summarize the
results at system stability, here we describe the dynamical
behavior of populations through the first 100 time steps,
where fluctuations might influence the system dynamics.

We have studied both asynchronous and synchronous dy-
namics for the three update rules in three topologies each:
lattice, random graph, and a small world with p=0.05. This
was done for r=0.7, where defection predominates. The re-
sults are relatively uninteresting for the replicator and pro-
portional updates in all topologies. One observes in the av-
erage a monotone decrease of cooperation starting with 50%
at time O until the curve flattens out at the values reported in
Figs. 1-4. The only difference is that the variance is more
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FIG. 4. (Color online) Synchronous proportional updating: (a)
frequency of doves as a function of the gain-to-cost ratio r for
different topologies: lattice (p=0), small worlds (p=0.01, p=0.05,
p=0.1), random graph (p=1); (b) small world with p=0.05 com-
pared to the grid (p=0) and random graph (p=1) cases. Bars indi-
cate standard deviations, and the diagonal dashed line is 1-r (see
text).

pronounced in the proportional case, as one would expect
looking at standard deviations in Figs. 1-4.

The situation is different, and more interesting, in the case
of the best-takes-over update, whose determinism causes
stronger variations. The most striking feature is a sudden
drop of cooperation at the beginning of the simulation, fol-
lowed by an increase and by fluctuations whose amplitude
diminishes over time. The effect is much more pronounced
with synchronous dynamics, shown in Fig. 7, than with the
asynchronous one. The behavior appears in all three topolo-
gies, but the drop is stronger in lattices and small worlds
with respect to the random graph at earlier times. As time
goes by, fluctuations remain larger in the random graph case.
Nevertheless, no experiment led to total extinction of coop-
erators at r=0.7.

PHYSICAL REVIEW E 73, 016132 (2006)

dove %

= = = std repl-dyn
1 lattice T
* ——— SW p=0.05
> = = = random grapH
0.8
X 06}
o
>
o
o
04t
0.2+
0 1 1 1 1 1 1 1 >
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r=G/C

FIG. 5. (Color online) Asynchronous best-takes-over updating:
(a) frequency of doves as a function of the gain-to-cost ratio r for
different topologies: lattice (p=0), small worlds (p=0.01, p=0.05,
p=0.1), random graph (p=1); (b) small world with p=0.05 com-
pared to the grid (p=0) and random graph (p=1) cases. Bars indi-
cate standard deviations, and the diagonal dashed line is 1—r (see
text).

IV. ANALYSIS AND DISCUSSION

If we take a closer look when comparing Fig. 3 to Fig. 4,
we note that, for proportional dynamics, asynchronous up-
dating allows for better cooperation than its synchronous
counterpart. The reason for this difference can be intuitively
understood in the following manner: when updating asyn-
chronously, let us suppose a player y has just imitated the
strategy of one of its neighbors x. Another way of viewing
this change is to say that player x has “infected” individual y
with its strategy. If x is a dove player, making y a dove as
well, not only does the percentage of doves increase in the
population, but the next time either x or y is evaluated for an
update, it will be able to take advantage of the other one’s
presence to help increase its payoff. Hence, the two players
mutually reinforce each other. Meanwhile, if y is infected by
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FIG. 6. (Color online) Synchronous best-takes-over updating:
(a) frequency of doves as a function of the gain-to-cost ratio r for
different topologies: lattice (p=0), small worlds (p=0.01, p=0.05,
p=0.1), random graph (p=1); (b) small world with p=0.05 com-
pared to the grid (p=0) and random graph (p=1) cases. Bars indi-
cate standard deviations, and the diagonal dashed line is 1—r (see
text).

x and turns into a hawk, on the one hand x has successfully
propagated his strategy thus increasing the overall amount of
hawks in the population; but on the other hand, this propa-
gation will cause him to have a lower payoff than he previ-
ously had. Not only is x’s payoff negatively affected, but x’s
presence also harms y’s payoff.

The same reasoning cannot be held when updating syn-
chronously. Indeed, a player x may change strategies at the
same time it infects its neighbor y. Thus, if x’s initial strategy
was D, it might switch to H as it infects its neighbor y, in
which case x will no longer have a positive effect on y’s
payoff contrary to what happens in asychronous updating.

When applying the replicators dynamics rule, the small
drop of the percentage of doves seen on the very left of Figs.
1 and 2 is due to the fact that for r=0 the game is somewhat
degenerated. Indeed, any cluster of more than one hawk will
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FIG. 7. Time evolution (first 100 steps) of the proportion of
doves for best-takes-over update; synchronous evolution with r
=0.7: (a) lattice structure; (b) small world with p=0.05; (c) random
graph. Ten randomly chosen evolutions are shown in each case.

either reduce to a single hawk or totally disappear, since a
dove, no matter what its neighborhood comprises, will al-
ways have a gain of zero, whereas a hawk that interacts with
at least one other hawk will have a negative payoff. The
remaining lone hawks will however survive but will not be
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able to propagate (having a gain exactly equal to that of their
neighboring doves). The system is thus found locked in a
configuration of a very high proportion of doves with a sig-
nificant number of isolated hawks.

If »>0, lone hawks always have a higher payoff than the
doves in their surroundings and will thus infect one of their
neighbors with its strategy. However for 0 <r=0.1, once the
pair of hawks is established, their payoff is lower than the
one of any of the doves connected to either one them. Even
a dove that interacts with both hawks has an average payoff
still greater than what a hawk composing the pair receives.
Consequently, when 0 <r=0.1, clusters of hawks first start
by either disappearing or reducing to single hawks, as previ-
ously explained for the r=0 case, but then these lone hawks
will become pairs of hawks. If the updates are done synchro-
nously, a pair of hawks will either vanish or reduce back to a
single hawk. One can clearly see that in the long run, hawks
will become extinct. Now if the updates are done asynchro-
nously, a pair cannot totally disappear because only one
player is updated at a time. However, this mechanism of a
pair reducing to a single hawk and turning back into a pair
again will cause the small groups of two hawks to move
across the network and “collide” with each other, forming
larger groups that reduce back to a single-pair hawk forma-
tion. Therefore, after a large number of time steps, only a
very few hawks will survive.

If we take another look at Figs. 1 and 2, we note that
when the population of players is constrained to a latticelike
structure, the proportion of doves is reduced to zero for val-
ues of the gain-to-cost ratio greater than or equal to ~0.8,
whereas this not the case when the topology is a random
graph. Let us try to give a qualitative explanation of the two
different behaviors. The first thing to be pointed out is that,
in the case of the replicators dynamics, if a dove is sur-
rounded by eight hawk neighbors, it is condemned to die for
values of r> %, whatever the topology may be. However, this
does not explain why for these same values, doves no longer
exist on square lattices or small worlds but are able to sur-
vive on random graphs. If the population were mixing, r
=0.8 would induce a proportion of doves equal to 20%.
Therefore, let us suppose that at a certain time step, there is
approximately 20% of doves in our population. Furthermore,
as pointed out by Hauert and Doebeli [6], in the Hawk-Dove
game on lattices, the doves are usually spread out and form
many small isolated patches. Thus, we will also suppose
20% of doves in the population implies that in a set of play-
ers comprising an individual and its immediate eight neigh-
bors, there are about two doves. Hence, a D-player has on
average one dove and seven hawks in its neighborhood. In
the lattice network, this pair of doves can be linked in two
different manners (see Fig. 8), having either two or four
common neighbors, thus, an average of three.

More generally, if we denote I' the clustering coefficient
of the graph and k the average degree, a pair of doves will
have on average I'(k— 1) common neighbors. Let us denote x
one of the two doves composing the pair as H,, a hawk
linked to x but not to the other dove of the palr and H, , 0
that is connected to both doves. If <r< ¢ and, assuming
that the hawks surrounding the pair of doves are not inter-
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FIG. 8. (Color online) Lattice: two possible configurations.

acting with any other doves (this gives the pair of doves a
maximum chance of survival), we have

G, < G, <Gy,

where G, is the average payoff of player .

Consequently, according to Eq. (1), x can infect H,, and
H,, can infect x.

Let us now calculate for what values of r the probability
that x invades the site of at least one H, is less than an H,
infecting x. To do so, let us distinguish the case of the asyn-

chronous updating policy from the synchronous one.

A. Asynchronous dynamics

The probability that an H, neighbor is chosen to be up-
dated and adopts strategy D is given by

1-Dk-1) 1
T 6,

A 2)

where N is the size of the population, (*) the probability an
H, hawk is chosen to be updated (among the N players), ()
the probability the chosen H, hawk compares its payoff with
player x, and finally ¢ is the function defined in Eq. (1).
The probability that x is chosen to be updated and is in-
fected by one of the H, , hawks is given by
IT(k-1

( — )d)(GHX,V - x)s
—k '

(%) (3)

where (*) is the probability x is chosen to be updated, (%)
the probability it measures itself against an H,, neighbor,
and ¢ the function defined by Eq. (1).

For a square lattice with a Moore neighborhood (Fz% and

=z

k=8), expressions (2) and (3) give us r> g—g ~().78, whereas
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for a random graph, I'=k/(N-1)= me =0.003~0 implies
that a pair of doves does not have any common hawk neigh-
bors, enabling them to survive if r<%. As for the small-
world cases, the clustering coefficient is very close to that of
the lattice, generating a behavior pratically identical to the
latter. This gives a qualitative explanation for the difference
observed in Fig. 1.

B. Synchronous dynamics

The probability that at least one H, adopts strategy D is
given by

(%)

1 (1-T)(k-1)
1-| 1-=¢(G,-Gy) ,
k € o

—_—

) 4)

where () is the probability a specific H, turns into a dove
and (*%) the probability none of the H, adopt strategy D.

The probability that x adopts the hawk strategy is given
by

'k -
@d’(GHX‘, - x),
k 2

~——

() (5)

where (*) is the probability player x compares its payoff to
one of its H, , neighbors.
For a square lattice with a Moore neighborhood (F:% and

k=8), expressions (4) and (5) yield
1<—SG+7C>_4 3<9G—6C>
- 1-—| === <= ===,
8\ G+c /| "8\ G+cC

and given that G/C=r, we obtain

1[-8r+7\|* 3(9r-6
1-|1-=(— <—|—],
8\ r+1 /| 8\ r+1
which is true for about r>0.775. This also holds for the

small-world cases, since, once again, they have a I" close to
the one of the lattice.

For a random graph of N=2500 nodes and k=8, we have
I"=0. Therefore, a pair of doves has a negligible probability
of having a hawk neighbor in common and thus cannot be
infected by the H strategy if r< % This enables a small per-
centage of doves to survive on the random graph topology
contrary to the lattice and small-world networks (see Fig. 2).
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In a few words, whether the update policy is asynchro-
nous or synchronous, as soon as r> %, isolated doves, as well
as pairs of doves surrounded by hawks, will end up disap-
pearing in the lattice and small-world cases due to the high
clustering coefficient. However, in the random-graph sce-
nario, although isolated doves are also bound to die if r> g,
pairs of doves have a more than even chance of surviving
(at least as long as r< %).

V. CONCLUSIONS

In this work, we clarify previous partially contradictory
results on cooperation in populations playing the Hawk-
Dove game on regular grids. Furthermore, we notably extend
the study to Watts-Strogatz small-world graphs, as these
population structures lie between the two extreme cases of
regular lattices and random graphs, and are a first simple step
toward real social interaction networks. This allows us to
unravel the role of network clustering on cooperation in the
Hawk-Dove game. We find that, in general, spatial structure
on the network of interactions in the game either favors or
inhibits cooperation with respect to the perfectly mixed case.
The influence it has depends not only on the rule that deter-
mines a player’s future strategy, but also on the value of the
gain-to-cost ratio G/C and to a lesser degree, on the synchro-
nous and asynchronous timing of events.

In the case of the best-takes-over rule, dovelike behavior
is advantaged if synchronous update is used, but the rule is
noisy due to its discrete nature. In the case of the propor-
tional update rule, giving the network a regular structure
tends to increase the percentage of the strategy that would
already be in majority on a random-graph configuration of
the population. The more important the structure is, in terms
of clustering coefficient, the higher the percentage of the
dominant strategy. In fact, cooperation predominates for low
to medium r values, whereas for higher r values cooperation
falls below the large population, mixing case. Finally, the
replicator dynamics rule tends to favor hawks over doves on
spatially structured topologies, such as small worlds and
square lattices, thus, confirming previous results for regular
lattices and extending them to small-world networks. In the
end, although small-world topologies show behaviors that
are somewhat in between those of the random graph and the
two-dimensional lattice, they usually tend more toward the
latter, at least in terms of cooperation level.

In this work, we have used static network structures,
which is a useful step but is not realistic enough, as the
interactions themselves help shape the network. In future
work, we shall extend the study using more faithful social
network structures, including their dynamical aspects.
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